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Abstract. Multifaceted regime shifts of Earth’s surface are ongoing dramatically and—in turn—considerably alter global 31 

carbon budget, energy balance and biogeochemical cycles. Sustainably managing terrestrial ecosystems requires an 32 

increased understanding of these structurally and functionally heterogeneous multi-component information and their 33 

changes, but we remain lack of such records of fractional vegetation and soil information at global scale. Here, we provide 34 

a globally comprehensive record of monthly vegetation and soil fractions during the period 2001–2022 using a spatio-35 

temporally adaptive spectral mixture analysis framework. This product is designed to continuously represent Earth's 36 

terrestrial surface as a percentage of five physically meaningful vegetation and soil endmembers (photosynthetic vegetation, 37 

non-photosynthetic vegetation, bare soil, ice/snow, and dark surface) with high accuracy and low uncertainty, compared to 38 

previous vegetation index and vegetation continuous fields product, as well as traditional fully constrained linear spectral 39 

mixture models. We also adopt non-parametric seasonal Mann-Kendall tested fractional dynamics to identify shifts based 40 

on interactive changes of these fractions. Our results—superior to previous portrayal of the greening planet—not only 41 

report a +9.35×105 km2 change of photosynthetic vegetation, but also explore decrease of non-photosynthetic 42 

vegetation (-2.19×105 km2), bare soil (-5.14×105 km2), and dark surface (-2.27×105 km2). Besides, Interactive changes 43 

of these fractions yield multifaceted regime shifts with important implications, such as a simultaneous increase in PV and 44 

NPV in central and southwest China during afforestation activities, an increase of PV in cropland of China and India due 45 

to intensive agricultural development, a decrease of PV and increase of BS in tropical zones resulting from deforestation. 46 

These advantages highlight that our dataset which provides locally relevant information on multifaceted regime shifts at 47 

the required scale, enabling scalable modelling and effective governance of future terrestrial ecosystems. The data about 48 

fractional five surface vegetation and soil components are available on Zenodo (https://doi.org/10.5281/zenodo.8323292, 49 

https://doi.org/10.5281/zenodo.8331843, Sun, 2023a,b) 50 
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1 Introduction 59 

Global terrestrial ecosystems are experiencing rapid and uncertain climate change and anthropogenic impacts since the 60 

twenty-first century (Alkama and Cescatti 2016; IPCC 2013; Song et al. 2018), which have profound impacts on shifts of 61 

Earth’s surface, such as greening of the planet (Chen et al. 2019; Piao et al. 2006; Zhu et al. 2016), afforestation (Chen et 62 

al. 2019; Tong et al. 2018), deforestation (Qin et al. 2019; Zeng et al. 2018), agricultural expansion (Chen et al. 2019; Zeng 63 

et al. 2018; Yu et al., 2021), glacier melting (Hugonnet et al., 2021; Zemp et al., 2019; Soheb et al., 2022), and urban sprawl 64 

(Kuang et al. 2020; Liu et al. 2020; Zhang et al., 2022). These land surface shifts inversely play a fundamental role in 65 

affecting climate change via considerably altering the Earth’s carbon budget, energy balance and biogeochemical cycles 66 

(Lawrence and Vandecar 2015; Qin et al. 2021). Increased understanding of these land cover changes is urgent requirement 67 

(Réjou-Méchain et al., 2021; Liu et al., 2020) to support the scientific, legislative and land management communities who 68 

strive to understand locally relevant knowledge and further protect, restore, and promote the sustainable use of terrestrial 69 

ecosystems under Sustainable Development Goal. 70 

However, land surface interpretation is obstructed by extensive existence of mixed pixels in satellite imagery, especially 71 

in heterogeneous landscapes (Roberts et al. 1993). Continuous vegetation indexes (e.g., normalized difference vegetation 72 

index, leaf area index) provide limited information on surface composition, which hinders our ability of understanding 73 

ecosystem’s structurally and functionally multifaceted shifts (Smith et al. 2019; Sun 2015).  74 

Previous advances in spectral mixture analysis method have facilitated investigation of estimating physically fractional 75 

vegetation and soil information in the mixed pixels with relatively few field points (Roberts et al. 1993; Small 2004; Smith 76 

et al. 1990). These unmixed endmember fractions provide multicomponent time series of information on surface 77 

heterogeneous composition and interactive evolution rather than individual vegetation indices (Elmore et al. 2000; Franke 78 

et al. 2009; Small and Milesi 2013; Sun 2015) and have been adopted to reveal the temporally dynamical systems under 79 

the influence of a changing environment and human (Lewińska et al. 2020; Suess et al. 2018; Sun et al. 2021). Recent 80 

studies have proven that spectral mixture analysis model has the advantage of providing more accurate and physically 81 

based representation of fraction vegetation-soil continues field in the subpixel level without training samples (Daldegan et 82 

al. 2019; Smith et al. 2007). This measurement offers a continuous, quantitative portrayal of land surface properties instead 83 

of discrete land cover classes, as well as superior to many of spectral indexes (e.g., vegetation index) (Rogan et al. 2002; 84 

Sun et al. 2019; Sun et al. 2020). Despite extensive validation and application of this method at the regional scale, there 85 

remain lack of global records of unmixed fractional vegetation and soil information, which may be resulted from the 86 

temporal and spatial variability of global intra-class and inter-class endmember spectra (Wang et al. 2021).  87 
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Recent advance in endmember variability has verified that Multiple Endmember Spectral Mixture Analysis (MESMA) was 88 

recommended be used in most applications considering its robustness in mitigating the endmember variability (Zhang et 89 

al., 2019). Such approach is well suited for heterogeneous landscapes because it allows an optimized model with varying 90 

the number and types of endmembers within each pixel (Roberts et al. 1998; Franke et al., 2009). However, considering 91 

world-wide landscapes with enormous heterogeneity under the climate fluctuations and human activities, the paradox of 92 

fine-grained spatial representation and challenged data processing for large scale and long-time series characterization of 93 

land surface has not yet been fully solved.  94 

Here, we create a unified monthly fractional vegetation-soil nexuses product for the period 2001 to 2021, with an spatio-95 

temporally adaptive MESMA methods at powerful Google Earth Engine (GEE) platform that provide powerful 96 

computational processing to realize planetary-scale analysis of geospatial data, at the same scale as monthly composites of 97 

MOD43A4 imageries (500×500m spatial resolution). This product is designed to continuously represent Earth's terrestrial 98 

surface as a percentage of surface endmembers with standard endmember spectra globally, providing a gradation of five 99 

surface vegetation and soil components: photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV), bare soil 100 

(BS), ice/snow (IS), and dark surface (DA). And we use non-parametric seasonal Mann-Kendall test to quantify global 101 

trends and their interactive shifts in fractional vegetation-soil nexuses over the full period. 102 

2 Materials and methods 103 

2.1 Dataset 104 

The MCD43A4 Version 6 Nadir Bidirectional Reflectance Distribution Function Adjusted Reflectance (NBAR) product 105 

is selected in this study (Schaaf and Wang 2015). Since the view angle effects have been removed from the directional 106 

reflectance, this dataset is provided as more stable and consistent daily surface reflectance imageries (bands 1-7) using best 107 

representative pixel of 16-day retrieval period of Terra and Aqua spacecrafts at 500-m sinusoidal projection. The 108 

MCD43A4 dataset was then temporally aggregated to produce a monthly composited dataset by taking the medium of all 109 

valid reflectance in GEE platform during 2001–2022.  110 

The Köppen-Geiger climate classification is a reasonable approach to aggregate complex climate gradients into a simple 111 

but ecologically meaningful classification scheme (Beck et al. 2018). This classification scheme includes five main classes 112 

and 30 subtypes (Beck et al. 2018). We thus selected recently developed global Köppen-Geiger climate classification maps 113 

at a 1-km resolution for the present-day (1980–2016). We initially used the 30-subtype classification for the selection of 114 

typical regions for the endmembers collection. Meanwhile, we aggregated 30 sub-types to five main classes (i.e., tropical, 115 
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arid, temperate, cold, and polar) according to classification scheme criteria to represent a static climate condition in this 116 

study.  117 

The land cover datasets are provided by the collection 6 MODIS land cover products (MCD12Q1) with 500-meter spatial 118 

resolution in 2001 and 2022 (Friedl and Sulla-Menashe, 2015). We aggregate the International Geosphere-Biosphere 119 

Programme (IGBP) classification types of these datasets into three regions—ecological zone, agricultural zone, urbanized 120 

zone. We define ecological zone as combination of evergreen needleleaf forest, evergreen broadleaf forest, deciduous 121 

needleleaf forest, deciduous broadleaf forest and mixed forest, closed shrublands, open shrublands, woody savannahs, 122 

savannahs, grasslands, permanent wetlands, Permanent snow and ice, barren; refine agricultural zone as aggregation of 123 

croplands and mosaics of croplands and natural vegetation; and represent urbanized zone by urban and built-up lands. 124 

2.2 Spatio-temporally adaptive spectral mixture analysis 125 

Recent advances in spectral mixture analysis methods have facilitated investigation of estimating fractional endmember 126 

abundances in the mixed pixels (Meyer and Okin 2015; Okin 2007; Roberts et al. 1993). This method assumes that the 127 

reflectance of target mixing pixel is a linear combination of the weighting coefficients (proportional endmembers) and 128 

associated pure spectra, 129 

𝑅𝑖 = ∑ 𝐹𝑗

𝑚

𝑗=1

𝐸𝑖,𝑗 + 𝜀𝑖 130 

Where 𝑅𝑖 is actual reflectance for band i; 𝐸𝑖,𝑗 is the reflectance of a given endmember j (1≤j≤m) for a specific band i; m is 131 

the number of endmembers; 𝐹𝑗 is fractional abundance of this endmember j; and 𝜀𝑖 is the residual error for specific band i. 132 

The fully constrained least squares spectral mixture analysis model, including abundance sum-to-one constraint and 133 

abundance non-negativity constraint, is commonly applied for estimation of fractional endmembers to guarantee physically 134 

meaningful results (Heinz and Chein-I-Chang 2002). spectral mixture analysis model is assessed by the model residual 135 

error (𝜀𝑖), reported as the root-mean-square-error (RMSE): 136 

𝑅𝑀𝑆𝐸 = √
∑ 𝜀𝑖

2𝑛
𝑖=1

𝑛
 137 

Recent studies have proven that spectral mixture analysis model has the advantage of providing more accurate and 138 

physically-based representation of fraction vegetation-soil continues field in the subpixel level without training samples 139 

(Daldegan et al. 2019; Smith et al. 2007). The spectral mixture analysis model includes three processes: endmember 140 

selection, and fraction estimation, and evaluation.  141 
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2.2.1 Nested endmember selection considering spatio-temporal variability. 142 

The quality of spectral mixture analysis is significantly dependent on the representativeness of endmember selected. 143 

Endmember spectra used in spectral mixture analysis, in general, can either be derived from measured field spectral library 144 

or images (Franke et al. 2009; Sonnentag et al. 2007). The image-based endmember selection method is more practical 145 

way because advantage of image endmember is that they can be collected at the same scale as the image and are relatively 146 

easy to associate with image features (Rashed et al. 2003).  Given that such endmember selection would be hampered by 147 

temporal and spatial variability of global intra-class and inter-class endmember spectra, we develop a nested framework 148 

for endmember selection considering spatial and temporal variability (Fig. 1).  149 

(1) Recent studies have proposed various compositional endmember frameworks in different application contexts. For 150 

example, a framework including substrate, vegetation, dark and ice/snow was proposed and verified globally for both 151 

Landsat and MODIS to allow estimated fractions to be compared consistently across diverse climate patterns and land use 152 

cover types (Small and Milesi 2013; Sousa and Small 2019). Another framework includes photosynthetic vegetation, non-153 

photosynthetic vegetation, soil, and shade (Roberts et al. 1993), this framework was widely adopted for presentation surface 154 

structure across tropical rainforest and dryland systems. Thus, we embody five endmembers to represent surface units, 155 

these five endmembers include photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV), bare soil (BS), dark 156 

(DA), ice/snow (IS). Concretely, PV refers to green photosynthetic foliage characterized by chlorophyll absorptions in the 157 

visible and high reflectance in the near-infrared bands; NPV represents non-tilled cropland/grassland, and tree litters; BS 158 

contains soil, rock, and sediment. DA represents a fundamental ambiguity; thus, it may be either absorptive (e.g., black 159 

lava), transmissive (e.g., deep clear water) or non-illuminated (shadow) surface. IS is permanent glaciers and snow that are 160 

widespread in the polar regions and high mountains. 161 

(2) Considering both climate patterns and land cover types, the typical sites employed for standardized endmembers 162 

selection were chosen based on global MODIS sinusoidal grid (10°× 10°intervals). The Köppen-Geiger climate 163 

classification zones is adopted as the dominant criterion to undertaking full coverage of climate types (Beck et al. 2018). 164 

Meanwhile, we also examine land cover diversity, characterized by Simpson's Diversity Index (D) of annual land use cover 165 

data from Terra and Aqua combined MODIS Land Cover Type (MCD12Q1) Version 6 product in 2020 for each MODIS 166 

grid. 167 

𝐷 = 1 − ∑(𝑃𝑖)
2

𝑚

𝑖=1

 168 
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Where 𝑃𝑖  is percentage of type i land use and cover in the grid, m is number of land use and cover in the grid. Finally, 10 169 

MODIS grids (i.e., h08v05, h12v12, h13v09, h16v01, h21v03, h22v02, h22v08, h24v06, h26v05, h27v06, h29v12) (Fig. 170 

S1a), with high land cover diversity (D>0.7, Fig. S1b), and containing all Köppen-Geiger climate types (Fig. S1c), were 171 

selected for generation of standardized endmember spectrum. 172 

(3) The representativeness of endmembers always shifts with time variation. A multi-temporal endmembers selection 173 

scheme has been validated for various time series images (Sun and Liu 2015; Sun et al. 2018). This process of utilization 174 

of both spatially and temporally mixed image collections for endmember selection can consider both spatial and temporal 175 

variability. Therefore, the multi-temporal standardized endmembers selection scheme is adopted in 10 typical zones that 176 

considering both climate and land cover diversity. Principal component (PC) transformation derived eigenvectors and 177 

associated PC images were utilized as criteria for determination of endmember types. Specifically, eigenvector of PC, 178 

displaying remarkable differences between shortwave infrared bands with other visible and near-infrared bands, is 179 

obviously able to highlight characteristics of IS. While PC eigenvector with relative high contrast between near-infrared 180 

band and other bands is mainly dominated by the information of PV, especially in vegetation growing seasons. The BS and 181 

NPV will be boosted with the PC when corresponding eigenvector emerges the same direction. Even though there is no 182 

obvious regular pattern of eigenvector for DA determination, the PC images can provide adequate information coupled 183 

with high-resolution images of Google Earth. After the determination of endmembers type and their PCs in each grid, we 184 

ranked these PCs by descending order of the variance contribution, and selected PC images of first three timings for 185 

endmember selection. We have listed the endmember types and their highlighting timings for each selected gird in Table 186 

S1. The image endmembers can be acquired from the vertex’s pixels (200-400 pixels) of scatter plot formed by the PC 187 

images at their corresponding timings in each grid. We then exported these acquired pure pixels as regions of interest to 188 

compute original MODIS reflectance as endmember spectra.  189 

(4) Besides, we collect MODIS derived endmember spectra used in previous study (Clarke et al. 2013; Daldegan et al. 190 

2019; Meyer and Okin 2015; Sousa and Small 2019). Finally, we establish a library of endmember spectra considering 191 

spatio-temporal variability, this library includes 35 GV spectra, 40 BS spectra, 25 NPV spectra, 16 DA spectra, and 15 IS 192 

spectra.  193 

(5) To ensure feasibility of pixel-by-pixel operations in GEE, we also consider the similarity between the spectral curves, 194 

the hierarchical clustering method is selected to aggregate these spectra of each endmember as sub-groups, and we also 195 

calculate average values of sub-groups. Finally, we obtain 4 PV spectra, 4 BS spectra, 3 NPV spectra, 2 DA spectra, and 2 196 

IS spectra to estimate vegetation and soil fractions at global scale during 2001 to 2020 (Fig. 2). 197 
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 198 

Figure 1: A framework for endmember selection considering spatial and temporal variability.  199 
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 200 

Figure 2: Endmember spectra. a-e, Hierarchical clusters of the endmember spectra of PV, NPV, BS, DA and IS. f, the 201 

averaged final endmember spectra including 4 PV spectra, 4 BS spectra, 3 NPV spectra, 2 DA spectra, and 2 IS spectra. 202 

2.2.2 Multiple Endmember Spectral Mixture Analysis 203 

The Multiple Endmember Spectral Mixture Analysis (MESMA) has been used to estimate fractional vegetation-soil 204 

nexuses based on selected endmember spectra. According to the convex geometry concepts, the number of endmember 205 

(n+1) in the model should be equal to the intrinsic dimensionality of the spectral space (n) plus one (Boardman 2013). We 206 

found the cumulative contribution of the top three PCs has exceeded 99% (Fig. S2), this three-dimensional PC space allows 207 

four-endmember models. We initially generate multiple endmember combinations based on selected endmember spectra, 208 

and achieve 692 combination models, including two-endmember model (88), three-endmember model (252) and four-209 

endmember model (352) (Table S2). The fully constrained least squares spectral mixture analysis model is selected to 210 

estimate fractions and count RMSE for each endmember combination in GEE platform. We finally search a specific 211 

a b c

d e f
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endmember combination with the smallest RMSE and achieve the estimated endmember fractions of this combination as 212 

final fractions.  213 

2.3 Validation of the dataset  214 

The smallest RMSE of 692 combination models is adopted as criteria to assess suitability and uncertainty of the model. 215 

The model suggests a generally good fit when mean RMSE over the image is less than 0.02 (Wu and Murray 2003). 216 

Moreover, Global Land Cover Validation Reference Dataset (GLCVRD) is provided with a 2m reference dataset from very 217 

high resolution commercial remote sensing data within 5 × 5 km blocks in 2010 (Olofsson et al. 2012; Pengra et al. 2015; 218 

Stehman et al. 2012). These datasets support global estimates of classification accuracy for four major land cover classes: 219 

tree, water, barren, other vegetation, cloud, shadow, ice & snow. Various recent studies have selected this dataset to 220 

evaluate the continuous fields of land cover types (Baumann et al. 2018; Qin et al. 2019; Song et al. 2018). We use all 221 

GLCVRD reference dataset (Fig. 3a) to assess the accuracy of globally fractional vegetation and soil estimates from 222 

MESMA. We exclude those pixels covered by cloud and measured percentage of each land cover type within cloud-free 223 

land cover maps (Fig. 3d), and firstly count our generated fractional vegetation and soil estimates within each 5 × 5 km 224 

block. PV and NPV endmember fractions are aggregated to match percentage of tree and other vegetation; BS corresponds 225 

to barren; DA includes water and shadow, IS refers to ice & snow. Based on paired measured fractions and our estimated 226 

fractions within blocks, we adopt four accuracy metrics including mean error (ME), mean absolute error (MAE), root-227 

mean-square-error (RMSE), and R2 for accuracy assessment.  228 

𝑀𝐸 =  
∑ (𝑝𝑖 − 𝑟𝑖)𝑛

𝑖=1

𝑛
 229 

𝑀𝐴𝐸 =  
∑ |𝑝𝑖 − 𝑟𝑖|

𝑛
𝑖=1

𝑛
 230 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑝𝑖 − 𝑟𝑖)

2𝑛
𝑖=1

𝑛
 231 

𝑅2 =  1 −
∑ (𝑝𝑖 − 𝑟𝑖)

2𝑛
𝑖=1

∑ (𝑝𝑖 − �̅�)2𝑛
𝑖=1

 232 

Where 𝑝𝑖 , 𝑟𝑖 are estimated endmember fractions and reference endmember fractions at ith block, n is sample size (n = 474), 233 

�̅� is mean of the reference endmember fractions of all blocks. 234 
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2.4 Change of vegetation and soil fractions 235 

Mann-Kendall test is commonly referred to as a nonparametric test method, which is procedures that detects monotonic 236 

trends of sequences over time (Kendall 1975; Mann 1945). This approach is robustness for trend detection and insensitivity 237 

to outliers and provided with an asymptotic relative efficiency of 0.98 relative to the parametric test derived from the 238 

coefficient of regression slope (Bradley 1968). When seasonal environmental data of interest are available as time series 239 

for which the time intervals between adjacent observations arc less than one year (i.e., daily, weekly, and monthly 240 

sequences), the null hypothesis of common Mann-Kendall test may be too restrictive (Hirsch et al. 1982). Therefore, a 241 

multivariate extension of the Mann-Kendall test has been advanced to handle seasonal sequences. In addition to identifying 242 

the trends of time series records, estimate of magnitude of such a trend is also necessary to quantitatively reveal the change 243 

of the time series. The seasonal Sen's slopes (change per unit of time) are commonly chosen to express this magnitude 244 

(Hirsch et al. 1982; Sen and Kumar 1968). Therefore, we impose the seasonal Mann-Kendall test and seasonal Sen's method 245 

to define trend and slope (annual change) of endmember fractions at the pixel level. The detailed information about 246 

seasonal Mann-Kendall test and seasonal Sen's method can be found in Supplementary Methods. If the Mann-Kendall test 247 

is not statistically significant (p ≥ 0.05), we define net change as 0. If the trend test is significant (p ＜ 0.05), we apply the 248 

seasonal Sen's method to estimate the per-pixel net change between 2001 to 2022 (i.e., slope times 22 years). Besides, we 249 

aggregate per-pixel net change of endmember fractions to spatial scales (such as country, biome, climate zone) to obtain 250 

total area change estimates at these aggregated scales from 2001-2022 as,  251 

Net area change =  ∑ 𝑇𝑖𝐴𝑖𝑁

𝑛

𝑖=1

  252 

Where 𝑇𝑖  is Sen's slope of endmember fraction for a statistically significant pixel i, 𝐴𝑖 represent area of pixel i, n is the 253 

total number of such pixels in the region, N is the length of study period (N = 22).  254 

3 Results 255 

3.1 Evaluation of monthly estimates of vegetation and soil fractions  256 

We utilize standard endmember spectra globally to estimate fractional vegetation-soil nexuses via MESMA. The simulated 257 

results elucidate that the MESMA model performs well with an ideal model RMSE over globe (0.018±0.022, Fig. 3a-c). 258 

We find the regions with RMSE above 0.02 account for less than one-fifth of the global area and are mainly distributed in 259 

barren such as Sahara Desert and polar regions. This exceptional performance demonstrates the superiority and low 260 

uncertainty of the model. This performance is also evidenced by evaluation results from GLCVRD (Fig. 3e-h, Table S3). 261 
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Specifically, the performance of PV+NPV, BS, and IS endmember estimates is reasonably satisfactory, all of which have 262 

MAE less than 0.118, RMSE less than 0.149, R2 greater than 0.592. Although the MAE (0.050) and RMSE (0.065) perform 263 

well, the R2 of estimated DA against measured DA presents only 0.156. This is resulted from the fact that our estimated 264 

DA less than 0.2 is presented as 0 in the reference data, because the interpreted reference dataset of high-spatial satellite 265 

observations ignored the shadows of the vegetation. In blocks with a DA greater than 0.2, the estimated DA and measured 266 

DA present better consistency, in which the shadows of hills are well measured by GLCVRD.  267 

 268 
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Figure 3: Evaluation of global fractional endmember estimates. a, the spatial pattern of average of monthly RMSE 269 

from 2001 to 2022, the overlaid red dots were spatial distribution of the 5 × 5 km validation blocks of GLCVRD reference 270 

dataset. b, the boxplot and violin plot for average of monthly RMSE (a), which indicate mean RMSE over image is less 271 

than 0.02. c, monthly averaged RMSE from 2001 to 2022 with error bars. d, the schematic of detailed land cover classes 272 

of GLCVRD reference dataset. e-h, Scatter plots of PV+NPV, BS, DA, IS fractions against GLCVRD reference dataset 273 

(tree + other vegetation, barren, water + shadow, ice & snow). Endmember fractions were derived from corresponding year 274 

and month of each 5 × 5 km block achieved. i-k, the bi-dimensional histogram of fractional endmembers and other dataset 275 

with bin size of 2%, including fractional PV against NDVI (i), fractional PV against LAI (j), fractional PV and NPV against 276 

fractional tree and non-tree vegetation of MOD44B vegetation continuous fields product (k). 277 

 278 

 279 

3.2 Spatial distribution of global vegetation and soil fractions 280 

Globally averaged monthly gradations of five surface vegetation and soil components are illustrated in Fig. 4. Our estimates 281 

depict that PV cover presents the largest area for both 30°-60°N and 0-30°S, which together account for more than half of 282 

the total global terrestrial vegetation area. We find the average PV fraction in the Northern Hemisphere is significantly less 283 

than that in the Southern Hemisphere, especially in the Amazon, although the area of PV at 30°-60°N is slightly greater 284 

than that of 0-30°S. Dominated by foliage-free desert vegetation and agricultural straw, NPV is mainly found in the semi-285 

arid regions (e, g., western China, USA and Australia) and croplands. BS is also located in the drylands of the Sahara, 286 

western Asia, and west-central Australia in terms of both fraction and total area. DA and IS, on the one hand, are mainly 287 

concentrated in in terrestrial water bodies and mountains, Greenland and global high mountains of the Himalayas and the 288 

Andes, respectively.  289 
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 290 

Figure 4: Global average of monthly fractional endmembers from 2001 to 2022. a, Spatialized RGB composition of 291 

three averages of monthly fractional endmembers (RGB: BS-PV-DA). b-f, average of PV, NPV, BS, DA, and IS fractions. 292 

Shadowed subplots are average of fractional endmembers (%, orange, lower) and area of endmembers (fraction × pixel 293 

area, ×106 km2, blue, upper) at respective latitudes, taking each degree as the statistical standard. 294 

3.3 Globally and regionally fractional endmembers dynamics  295 

The total area of PV increases 9.35×105 km2 from 2001 to 2022, which represents a +1.88% change relative to 2001 green 296 

vegetation (Fig. 5; Table S4). This increased trend results from higher magnitude of gain (1.57×106 km2), nearly 2.5 times 297 

BS PV DA 1
0
0
%

                  0
%

a b

c d

e f

0% 20% 40% 60% 80% 100%

https://doi.org/10.5194/essd-2023-341
Preprint. Discussion started: 10 October 2023
c© Author(s) 2023. CC BY 4.0 License.



15 

 

the loss area. Our PV area gain estimate basically agrees in magnitude with the global vegetation continuous fields 298 

product’s estimate of net vegetation area change (1.36×106 km2), despite differences in the time period covered (1982-299 

2016) and definition (tree and other vegetation) (Song et al. 2018). Temperate, arid and cold regions together contribute 300 

more than 90% of the greening area (Fig. 6; Table S4). In these areas, the China and India are two major contributors (Fig. 301 

S3) through land use management like ecological afforestation and agricultural expansion (Chen et al. 2019). Within 302 

Brazilian Amazon, we find a large area of PV loss (Fig. S3), which is also supported estimates of forest cover and loss 303 

(Qin et al. 2019).  304 

A decreasing trend is observed in NPV globally (2.19×105 km2), representing a -1.45% change relative to 2001 NPV area 305 

(Fig. 5; Table S4). Tropical and temperate regions together contribute more than 80% of the loss area of NPV, which may 306 

result from global warming induced tree greening. Although the arid is major source of NPV (2.75×106 km2 in 2001, 18.2% 307 

of globe NPV area), the change area of NPV is only less than 10000 km2 (Fig. 6; Table S4).  308 

In the context of the greening of the vegetation, the degree of BS is reduced by 5.14×105 km2 during study period, indicating 309 

a -1.09% change relative to initial BS of 2001. The decreased global BS trend occurs in temperate, arid and cold regions, 310 

accounting over 90% of net BS change area. In contrast, tropical region appears an increasing trend (+1.22×105 km2), and 311 

thus offset the decline in BS in the rest of the regions (Fig. 6; Table S4). This outcome result from the forest loss induced 312 

soil exposure in Brazilian Amazon and Southeast Asia (Fig. S3). Meanwhile, the total area of DA also represents a net 313 

change of -2.27×105 km2, from 2001 to 2022, which represents a -0.69% change relative to 2001 DA area. The largest 314 

negative contributions to the decreased global DA appear in cold (46.26%) and arid (32.87%) (Fig. 6; Table S4). We 315 

observed an increase of 2.46×104 km2 in IS globally, which represents a +0.11% change relative to 2001 IS. Such positive 316 

trend is mainly benefited by the increase of snow and ice in the cold regions, in which the net increase area is 1.5 times 317 

greater than the global net IS change (Fig. 6; Table S4). This is caused by the increase of snowfall. However, global 318 

warming is causing a substantial melting of snow and ice, resulting in the arid, tropical, temperate and polar regions show 319 

a decreasing trend in IS cover.  320 
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321 

Figure 5: Globally fractional endmembers dynamics at pixel level. a, composited RGB image with ∆BS, ∆PV, and 322 

∆DA. b-f, the change magnitude (%) in each pixel for estimated endmembers, i.e., ∆PV, ∆NVP, ∆BS, ∆DA, and ∆IS. 323 
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Pixels showing a statistically significant trend (Seasonal Mann–Kendall test, P < 0.05) for either endmember are depicted 324 

on the change map. 325 

 326 

Figure 6: Global and regional fractional endmembers dynamics. The middle subgraph is aggregated five Köppen-Geiger 327 

climate classes. a-f, the gain area, loss area and net change area for five land surface endmembers in globe (a) and five 328 

climate zones, i.e., tropical (b), arid (c), temperate (d), cold (e), and polar (f).  329 
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4 Discussions 330 

4.1 Compared with other datasets and traditional SMA model. 331 

We compare our estimates vegetation and soil fractions dataset with NDVI, fractional PV and NPV against fractional tree 332 

and non-tree vegetation of MOD44B vegetation continuous fields product (Fig. 7a, b). The PV fractions presents great 333 

linear correlations with NDVI and fractional tree and non-tree vegetation (P-value<0.01). However, our product can 334 

overcome the problem of saturation of NDVI in the regions embodying high coverage vegetation. Such advance can be 335 

supported by previous regional comparison research (Rogan et al. 2002; Sun et al. 2019; Sun et al. 2020). Besides, 336 

considering that MOD44B vegetation continuous fields product (DiMiceli et al., 2015) provides a gradation of three surface 337 

cover components: percent tree cover, percent non-tree cover, and percent bare, the dark components (i.e., shadow of 338 

vegetation and mountain, water) are not quantified. Therefore, fractional PV and NPV is overall biased high, especially in 339 

areas with low vegetation cover.  340 

Moreover, we also carry out a comparison with traditional linear spectral mixture analysis to demonstrate the advantages 341 

of our spatio-temporally adaptive spectral mixture analysis (Fig.7c, d). Such linear spectral mixture analysis was performed 342 

using fully-constrained framework based on two fixed endmember spectral curves: (1) average of all spectral spectra for 343 

each endmember and (2) existing spectral spectra from Small and Sousa (2019). Both of two fully constrained linear 344 

spectral mixture models are inferior to our framework since we consider the variability of the spectra in both time and 345 

space. 346 

  347 

Figure 7: Comparisons with other datasets and LSMA models. a, b, the bi-dimensional histogram of fractional 348 

endmembers and other dataset with bin size of 2%, including fractional PV against NDVI (a), fractional PV and NPV 349 
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against fractional tree and non-tree vegetation of MOD44B vegetation continuous fields product (b); c, d, the boxplot and 350 

violin plot for average of monthly RMSE for two fixed endmember spectral curves using fully constrained linear spectral 351 

mixture models, including (c) average of all spectral spectra for each endmember and (d) existing spectral spectra from 352 

Small and Sousa (2019). 353 

4.2 Advances and uncertainties of estimates of global vegetation and soil fractions 354 

This paper implements a globally monthly estimates of fractional vegetation-soil nexuses in 2001–2022 via high-accuracy 355 

and time-consuming MESMA algorithm at sub-pixel scale (Roberts et al. 1998), benefited from the GEE platform that can 356 

provide powerful computational processing to realize planetary-scale analysis of geospatial data. Moreover, we can more 357 

conveniently target the most optimal model from 692 combination models for each MODIS pixel, thus help to understand 358 

the specific vegetation-soil compositional structures in each pixel or region (Roberts et al. 1998). Such scheme can improve 359 

the ecologists and managers understanding of multifaceted terrestrial ecosystems for differentiated measures. These 360 

monthly estimates of fractional vegetation-soil nexuses can be upgraded to multi-timescale (daily, yearly) products to serve 361 

different needs, and thus provide multicomponent time series of information on surface heterogeneous composition and 362 

interactive evolution. Moreover, these fractional endmembers have been proven their potential for application in land use 363 

cover classification (Sun et al., 2020), time-series evolutionary pathways (Sun et al., 2021; Daldegan et al., 2018) and 364 

biophysical process modelling (Sun et al., 2022; Sousa and Small, 2018). This globally comprehensive record of monthly 365 

vegetation and soil fractions during the period 2001–2022 may provide basic data for quantification and modelling of 366 

global change, as well as provide an important foundation for measuring sustainable development goals such as land 367 

degradation neutrality (Chasek et al., 2019; Sun et al., 2019). 368 

The temporal and spatial variability of endmembers has always been a significant constraint in obtaining global-scale 369 

vegetation and soil fractions from imagery (Wang et al. 2021). The spatio-temporally adaptive framework employed helps 370 

to increase the representativeness of endmember selection, and MESMA also considers the suitability of each combination 371 

of these endmembers within each pixel. However, considering the limitations of computational resources, our solution on 372 

hierarchical clusters of the endmember spectra can improve considerably cost-effective unmixing of long time-series 373 

satellite records over globe under the neglect of certain accuracy requirements (Fig. 3). Furthermore, to validate the 374 

representativeness of the hierarchical clustering results, we select a spectral spectrum from actually selected endmember 375 

spectra that exhibit the largest mean squared error from the mean of cluster for each cluster. These selected spectral spectra 376 

were then used to reconstruct an extreme library of endmember spectra and used to estimate fractional vegetation and soil 377 

using MESMA. It can be found that 90% of the RESE's differences are concentrated within 1% (Fig. 8a), indicating the 378 

relative stability of the unmixed results from two libraries as well as the effectiveness of the clustering. These are also 379 
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corroborated by the differences between unmixed endmember fractions (Fig. 8b-e), as indicated by that more than 90% of 380 

global pixels have a difference of 10% or less, as well as more than 70% of global pixels present a difference up to 1%, 381 

except for the two endmembers with higher spatial variability (NPV, 61.59%; DA, 62.59%). With the assumption of 382 

increased computational power in the future, we believe that utilization of combination models from actually selected 383 

endmember spectra (35 GV spectra, 40 BS spectra, 25 NPV spectra, 16 DA spectra, and 15 IS spectra) or expanded 384 

endmember spectra may further improve the accuracy and stability of estimates of gradations of five surface vegetation 385 

and soil components at global scale.  386 

 387 

Figure 8: Difference in unmixed results between mean endmember library and endmember library in hierarchical 388 

cluster. a, b, c, d, e and f represent histogram of RMSE, PV, NPV, BS, DA and IS. 389 

4.3 Implications of global and regional shifts from pairs of two endmembers 390 

We find greening of Earth characterized by increased photosynthetic vegetation and reduced bare soil exposure, is observed 391 

in temperate and cold countries such as China and Russia (Fig. 9; Figure S3). This finding is in agreement with the finding 392 

of climate-driven greening trend in Northern Hemisphere (Piao et al. 2006). While the biomass decreases, exhibited as 393 
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decreased PV and increased BS (Fig. 9), presented only half of the global climate-driven greening. These findings imply a 394 

global trend towards greening in the context of global warming, as supported by a large number of published studies on 395 

global vegetation change (Chen et al. 2019; Piao et al. 2006; Song et al. 2018). Moreover, the polar zone is hotspot of ice 396 

melting and agrees an accepted fact of accelerated retreat of glaciers and ice under global warming (Hugonnet et al. 2021; 397 

Zemp et al. 2019).  398 

Besides, the overexploitation of resources is one of environmental problems of interest and an important factor in causing 399 

above climate change and disasters. Global overexploitation has led to problems such as vegetation degradation and 400 

intensive utilization of agricultural land. The human overexploitation of forest and grassland induced biomass decrease 401 

present a decrease of PV and increase of BS (Fig. 9; Fig. S3), especially over tropical rainforest of Brazilian Amazon and 402 

South Asian. This finding agrees with deforestation and agriculturalization in these regions provided by previous studies 403 

(Qin et al. 2019; Zeng et al. 2018). Within agricultural area, the agricultural intensification is a human-driven greening 404 

process characterized by increased photosynthetic vegetation and reduced bare soil, this shift mainly occurs in India and 405 

the North and Northeast China Plain (Fig. 9; Fig. S3) (Chen et al., 2019). We also found urbanization-driven biomass 406 

decrease in the global terrestrial ecosystems, especially in China and North America (Fig. 9; Fig. S3), resulted from 407 

occupation of agricultural and ecological lands during urban sprawl (Kuang et al., 2020, 2021; Zhao et al., 2022).  408 

Eco-restoration depicts a process that currently needs urgent attention in our understanding and utilization of resources and 409 

environment. Different from climate-driven greening that presents trends of increasing PV and decreasing BS, the human-410 

driven afforestation shows positive trends of both PV and NPV, mainly attributed to recent implementing of policies on 411 

the ecological restoration through large number of protective forests planted (Fig. 9; Fig. S3). These afforested regions are 412 

primarily found over China, Europe, North America, supported by previous study on greening world (Chen et al. 2019). 413 

Moreover, Green space construction in urbanized regions has been carried out, integrated with road construction and city 414 

renovation, and generate an increasing of footprint of urban greening, especially in China (Fig. 9; Fig. S3).  415 
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5  Data availability 

The data about fractional five surface vegetation and soil components can be exported from GEE platform via provided codes 

or are available on two Zenodo (https://doi.org/10.5281/zenodo.8323292, https://doi.org/10.5281/zenodo.8331843, Sun, 2023a, 

b). The first dataset includes five fractions from 2001-2011, another includes five fractions from 2012-2022. The file is a 425 

compressed month-by-month GeoTIFF data for each year, according to the grid of longitude 60° and Latitude 50°. Since the 

dataset for each year includes 216 files, named as “SMA_year_(month-1)_gridid.tif”, like “SMA_2001_0_0.tif”. The public 

datasets have been listed in the Methods. 

6 Code availability 

The GEE codes for the MESMA and seasonal Mann-Kendall test will be available at GitHub 430 

(https://github.com/qiangsunpingzh/GEE_mesma) or other platforms upon publication; Common code for generating figures 

is available at https://matplotlib.org/.  

7  Conclusions 

In this paper, to provide locally detailed socio-ecological knowledge about globally multifaceted changes in fractional 

vegetation-soil nexuses under climate change and anthropogenic impacts, we estimated monthly vegetation and soil fractions 435 

in 2001–2022 that provide multi-component information on surface heterogeneous composition based on a spatio-temporally 

adaptive spectral mixture analysis framework. This product of monthly vegetation and soil fractions from 692 combination 

models can provide an accurate estimate of surface heterogeneous composition, better than previous vegetation index and 

vegetation continuous fields product, as well as traditional fully constrained linear spectral mixture models. This solution can 

both improve considerably cost-effective unmixing of long time-series satellite records over globe and meet the accuracy 440 

requirements. Based on these estimates of vegetation and soil fractions, we find a greening trend of Earth, as indicated by a 

increase of the total area of PV, which represents a +1.88% change relative to 2001 green vegetation. This greening trend can 

be found all climatic zones other than the tropics. In addition to the trends in the greening reported by other study, we also 

found that the increase in PV was accompanied by a decreasing trend in BS, DA and NPV in most regions. And there is a trend 

of simultaneous increase in PV and NPV in central and southwest China during afforestation activities. Therefore, a 445 

combination between interactive changes of vegetation and soil fractions can be adopted as a valuable measurement of climate 

change and anthropogenic impacts. 
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